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Abstract. The multimode diffusion approximation for solute dispersion in transversely bounded shear flows owes its
origin to the formal method of eigenmode expansion. It is put forth upon the premise that a quasi-steady condition
termed the Taylor limit of equilibrium exists in the course of time when equilibrium estimates of the residual terms
of the concentration distribution can be realistically made contingent to the evolution of their primary counterparts.
By applying the Green's function for the diffusion equation, this paper provides a qualifying account for the
establishment of the Taylor limit. A method of successive approximations is derived for the determination of the
principal mode coefficient functions with the inclusion of bulk reaction and longitudinal diffusion. The resulting
equations governing the evolution of these mode coefficient functions are truncated to conform to the multimode
diffusion type and the special Taylor-limit results given by Smith are easily deduced. Examples are given to illustrate
the attainment of a convergent solution.

1. Introduction

The effects of cross-stream diffusion and longitudinal velocity shear on the dispersion and
transport of a solute in laterally bounded rectilinear flows have been investigated by many
authors. Though the basic contributing physical principles are qualitatively easy to under-
stand, the quantitative assessment of the time evolution of the solute concentration governed
by the underlying convection-diffusion equation, however, has led to much complicated
mathematics. It was first concluded by Taylor [1] for dispersion in flow through straight
circular pipes that at sufficiently large times the area-weighted transverse average solute
concentration satisfies, in a coordinate moving with the mean flow velocity, a diffusion
equation having a constant coefficient. Aris [2] and Chatwin [3] subsequently proved
Taylor's conclusion from their theoretical analyses of the rectilinear pipe flow dispersion
problem. The asymptotic model of Taylor dispersion has been generalized to describe
diffusive transport in flows prescribed by curvilinear coordinates (see for example Frankel
and Brenner [4]). At the other extreme, Lighthill [5] has derived a solution applicable at
small times for the very initial evolution of the solute concentration. Case-specific finite-
difference solutions have been studied by Ananthakrishnan et al. [6] and Gill and
Ananthakrishnan [7] using the explicit formulation, and by Akay [8] using a time-splitting
method. The generalized dispersion theory advocated by Gill and Sankarasubramanian
[9, 10], though targeted for the purpose of developing a solution that in principle can be
applied at arbitrary times, is essentially limited to its second-order approximation for
practical applications. This is because the explicit evaluation of the requisite higher-order
phenomenological transport coefficients, which depend specifically on the imposed initial
concentration distribution except when time becomes very large, turns out to be formidably
difficult even for the simplest cases. The conditions under which this particular theory is valid
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has only recently been established in general terms and it has been shown that for an inert
solute the second-order dispersion approximation is only applicable asymptotically at large
and small times after solute release [11]. Such an approximation, for an initial solute input
with a concentration distribution symmetric about the moving origin, invariably yields a
Gaussian distribution for the transverse average concentration which is known to be at
variance with experimental evidence except when sufficient time has elapsed. In an attempt
to remove the shortcomings of the dispersion approximation, Smith [12] has introduced a
memory displacement theory which, in the course of simplification, is reduced to the
delay-diffusion description for the determination of the area-weighted mean concentration.
It has now been shown, however, that such a theory is unsatisfactory in its original proposed
form except possibly perhaps under highly restricted conditions because what it represents is
the lowest order approximation of a general formulation which is valid on the same basis as
that of the generalized dispersion theory [11].

More recently, also by Smith [13], a method of multi-mode diffusion approximation has
been formulated by recognizing the existence of a quasi-equilibrium condition, which is
called the Taylor limit of equilibration, of the evolution process beyond some characteristic
time which becomes smaller and smaller as the number of employed eigenmodes increases.
By design, the local concentration in this method is considered to consist of a principal part,
which is to be resolved from the evolution equations, and a residual part, which in the Taylor
limit is prescribed to follow a gradient formula. The basis for using the latter prescription is
justified from the observation that, for dispersion without bulk solute removal, the single
mode calculation yields precisely the classical large time result of Taylor's. In this paper, the
condition under which the Taylor limit of equilibration exists is examined and the multimode
diffusion formulation is extended to include the use of the method of successive approxi-
mations.

After this work has been completed, the authors are brought to attention by the referee to
the recent articles by Mercer and Roberts [14] and by Young and Jones [15] dealing with the
generalized Taylor model of shear dispersion formulated on the basis of the center manifold
theorem. The theory correctly predicts the centroid, variance, and the higher moments of
the transverse mean concentration distribution asymptotically at large times when the
dispersion coefficients have all essentially reached their steady-state values. The multimode
diffusion approximation to be dealt with in this paper, however, can be applied at arbitrary
times, including the period of preasymptotic dispersion which is not accessible by the center
manifold description.

2. Dispersion of solute with bulk depletion and boundary absorption

In keeping with the generality of the dispersion concept, we shall be concerned in this paper
with the dispersion of a solute in the course of time subsequent to its release into a laterally
bounded rectilinear flow field by including first-order bulk depletion and boundary absorp-
tion. The local solute concentration c(x, y, z, t), as a function of the longitudinal distance x,
the transverse location (y, z), and time t, satisfies the full equation of convective diffusion

ac 2cK ac (l
at s( - + V' (Kc) U - kAc + q5(t) (la)at ~ ~ ~~~~- u axx-
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together with the boundary condition

K,nVc + ksc = O on A. (lb)

Here V is the transverse gradient operator, n the outward normal to the transverse boundary

dA, q(x, y, z) the instantaneous initial rate of solute injection, (t) the Dirac delta function

and, for the purpose of generality, we shall allow the coefficients in the above equations to

vary over the transverse cross-section in the analysis. Thus, K(y, z) is the longitudinal

diffusivity, K,(y, z) the transverse diffusivity, u(y, z) the longitudinally rectilinear flow

velocity, and kA(y, z) and k,(y, z) are the reaction rate coefficients for bulk depletion and

boundary absorption, respectively.
The eigenmode problem of transverse diffusion prescribed by the set of equations

V (K,V4j) = Ahij = 0, (
K,n Vqj, + ksij = on aA A,(2)

generates an infinite set of orthonormal eigenfunctions ij(y, z) corresponding to the

eigenvalues Ahi which are non-negative, discrete, and denumerably countable without limit

because of the boundedness of the lateral region by definition. Thus, we specify

Ok = 5J k 8
1k (3)

OhAO <Al <,< ' ' ' (4)

where 1jk is the Kronecker delta and an overbar is used to indicate averaging over the

transverse cross-sectional area.
It is convenient and also appropriate to prescribe in principle a representation of the solute

concentration in the form of the series expansion [16]

c(x, y, z, t) = c(x, t)(y, Z) (5)
j=O

With this solution substituted into equation (la), multiplying the result by 'j, (j fixed), and

then integrating over the transverse flow cross-section, we obtain the exact equations

governing the evolution of the longitudinal coefficient functions cj(x, t)

acj aCk a ck\
at+ i (jkCk ik ax Kik Xd2 )= qj(t) , for j = 0,1,..., (6)

where the constant coefficients generated by eigenmode coupling for bulk depletion,

convective transport, and longitudinal diffusion, respectively, are

P3 k = Aj6jk +kA#,4k (7)

0 P00 < 11 <' ' 

Uik =(UjkPk, (8)

K, k = K 1P, qf , (9)
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and the strength of the eigenmode forcing term due to the initial solute release is

qj(x) =q(x, y, z)qij(y, z) . (10)

3. Residual functions and multimode approximations

To facilitate formulating the method of multimode approximation, the local solute concen-

tration is written in the form

N-i

c(x, y, z, t) = , Cjj+ + cu,, (11)
j=0 n=N

where the first sum is the principal part to be functionally resolved with the use of an

estimate of the second sum, which is called the residual part, under the condition of the

Taylor limit of equilibration. We write the governing equations of the principal and residual

longitudinal coefficient functions in the following forms which seem particularly suited for

the multimode description

aci N-a a2Ck ac, - K" a2

at + k ( jkck + Uk KJk x2 ) __N (3jnC + gin ax Kin a 2 ) =qjs(t) ,

for j = 0,1, ... ,N-1. (12)

acn acn a2 c aN-1 ( ack 2ck 

at + nnCn + Un, ax -Knn ax nkCk + Unk ax - Knk aX 2 + qn8(t)

acm a2Cm)
-E (1- nm) (fnmCm + Unm X- - Knm ax 2 )
m=N a

for n N. (13)

In what follows we present in a cookbook fashion the formulation of the first few low-order

schemes of approximation.

3.1. Baseline truncation

We shall assume that the series given by equation (5) converges uniformly to the

mathematically rigorous solution satisfying the underlying convective diffusion equation. It

then becomes possible, at the baseline level or the zeroth order approximation, to use the
partial series, by including a sufficiently large number of modes N,

N-1

c(x, y, z, t) E ci(x, t)j(y, z), (14)
j=0

as an approximate representation of the solute concentration. This approximation is valid at
times when the residual functions are negligibly small and therefore any contributions arising
from these terms in equation (12) can be discarded, and correspondingly one has the
approximate evolution equations
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acj 1Ck aCk

at+ kO (1Jck + Uik a Kik a )=2 q(t), for j=0, ,...,N-1. (15)
k=O

Equation (15) defines a set of N linear equations with constant coefficients for the
determination of the principal mode coefficient functions c (j - N - 1). These equations,
which can be solved by a host of routine techniques, are obviously useful for numerical
computations with the use of a digital computer in the sense of convergence in the mean. For
an efficient representation, the number of terms of the series N must be large enough so that
little or no contributions to c(x, y, z, t) arise from the eigenmodes of orders equal to and
higher than N. For systematic determination of the convergent solution in practice, a suitable
convergence criterion serving to check the efficiency of the representation must therefore be
provided in the computation process after each step the number of terms N is incremented.

3.2. First order approximation

A somewhat more efficient description can be formulated by making use of equation (13)
which serves to estimate the residual mode coefficient functions. As a first approximation,
again by making the number of principal modes N sufficiently large, the second summation
term in equation (13) can be neglected and we have the approximate governing equations

a x 2 = - ( k ax axn 

(16)

Consequently the residual longitudinal coefficient functions become deterministic in terms of
their principal counterparts.

In the above equation, the diffusivity Knn and the bulk rate coefficient 3,nn associated with
eigenmode kt, are constant and the summation term can be regarded as a continuous source
because it is independent of the particular function cn which the present equation seeks to
determine under the imposed conditions that cn ---> 0 as x-- +±o. The solution is

Cn(X, t) = pn(x, t) - E I dt, I dxa nkk -Unk G 'n(X t , t)k=O 0 ax, a2

for nŽ N, (17)

where

Gn(x, t Xt) e IX - X, t t (t) t - _32nn(t ts)} ' (18)

is the Green's function for diffusion generated by an instantaneous point source of strength
unity released at time t and location x in the source coordinates (see for example Morse
and Feshback [17]), and

pn(x, t) -2V e-nn\ t _ qn(x) exp[ - 4 nnt ,2dx (19)
2V7rKm 4j I
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is the contribution to c, arising from the initial distribution exclusively due to longitudinal
diffusion, i.e., as if lateral diffusion were completely absent.

It can readily be inferred from the integral solution of equation (17) that, because the
Green's function of equation (18) decays exponentially in time according to exp[-ln,,(t -
t)], the evolving of the eigenmode coefficient functions c depends critically on the events
occurred immediately prior to the present time t within a characteristic time duration of the
order of 1//3,,. The diagonal coefficients /3,, as has been specified in equation (7), are
non-negative and form an ascending sequence. As the number of principal modes N included
in the approximation of equation (16) increases, the exponential time decays of the residual
functions therefore become progressively more rapid, and correspondingly the characteristic
time durations decrease indefinitely toward zero. It then follows that if the mode number N
is sufficiently large and the effective time interval consequently becomes sufficiently small,
the Green's function contributing to the integral of equation (17) will become so sharply
peaked that, by using the limiting representations,

,,nn exp[--3,n(t-ts)] =8(t- ts) , nn- -, (20)

and

1 F (X--Xs - n At)
2

] 

2 expI- ( 4 At I =8(x-xs), At->O, (21)

we are qualified to write, for sufficiently large P3nn,

G,(x, t I xs, t) --- (x-x)8(t-ts) nn (22)

where 8(x) is the Dirac delta function. Also at times such that,

13NNt > 1, (23)

the residual mode coefficient functions c associated with the higher modes qin have
essentially lost their memories about their initial identities because the functions p,(x, t) of
equation (19), on account of 3,,nn 3 NN, effectively have all decayed to zero.

Use of the above limiting form of the Green's function in equation (17) while imposing the
condition of equation (23) leads us to the asymptotic expression

c,(x, t) = ,,k= nkCk + nk ax Knk X2 ) for n N, (24)

which clearly is a version of the multimode approximation when bulk depletion, convective
transport, and longitudinal diffusion are all taken into account. It is thus seen, as is also the
case with Smith, that under the Taylor limit of equilibration which presently can be defined
as a condition at times after solute release so that the qualification requirements of equations
(22) and (23) are reasonably met, the residual terms become quasi-steady in character by
being concomitant to the principal terms in origin. It is to be noted, however, that, at a time
required by the condition of equation (23), this is valid only if a large number of modes are
included in the approximation, i.e., if the limiting form of the Green's function becomes
tolerably meaningful.
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If the asymptotic expression of equation (24) is used in equation (12) and x-derivatives
only up to the second order are retained after the substitution, we obtain the following set
of coupled equations serving to resolve approximately the N principal mode coefficient
functions

t + E (Bjkck + Ujk x - Kk = qj(x)(t) 

(25)
I 3NNt>l, j=0,1,...,N-1,

where

t jn,=ni- _ _ijnank + Ujnnk
Bjk = jk -, Ujk =Ujk n +n

~n = ~~N n n ~=N O~nn (26)

Kjk = Kjk + UjnUnk - jnKnk - KjnPnk
n=N fnn

At long enough times, the solute spreads out longitudinally over a large distance so that we
can use the above diffusion approximation by neglecting the x-directives of orders 3and
higher.

3.3. Higher order approximations

To obtain the next higher level of approximation for perhaps a somewhat closer estimate of
the residual coefficient functions, the first-order expression of equation (24) for cn is used in
the second sum of equation (13) to yield

ac, acn a 2 c, \C- , ___, 
2C,6N-1 2

at + ~16nnCn + Unn x -Knn d2 = _ s(nkC k + Unk x - Knk X
2

) + qk(t) nN
ax k=O x ax

(27)

where again, within the limit of diffusion approximation, x-derivatives of orders 3 and higher
have been ignored, and the mode coupling coefficients are given by

[;k: _[~nk --_ E (1 I nmU) +nmmk 

m=P m=N nm-- (28)m

Kk + k (1 n) UnUmk -nmk - P-Kk- KnmPmk
m=N mm

Thus, if a sufficiently large number of principal modes N is included in the calculation so that
the limiting form of the Green's function given by equation (22) for establishing the Taylor
limit of equilibration applies, we then have for the residual coefficient functions,

Cn(X, t) = - E-- (6r kck +unk a k K ax2K ) for n N, (29)Plnn k= 0 n ax n

which can now be used in equation (12) to yield the diffusion equations for resolving the
principal coefficient functions in the second-order approximation,
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ac N1 a a C

a E (BCk + Uk a - K;k a2 = q(x)8(t),at k=0 jk jk ax jk ax'

P3NNt> l , j=0,1,...,N-1,

where

n _R- pErinrk - ,, _ E jPinUnk + Ujnflk

Btk rjk Uk -Ujk 
n=N 1nn n=N Onn

n= -k 'Jk - K'

n=N rn

Equation (29) can now be used in equation (13) to obtain the third-order multimode
formulation. The extension to higher orders by successive approximations is obvious.

4. Results of Smith for dispersion with constant bulk reaction rate

The extended Taylor limit suggested by Smith [13] for flows with constant bulk reaction rate
coefficients k (specifically Smith considered k = 0) can be obtained in a rather trivial
manner from the above asymptotic approximations. Under such stipulations one has from
equations (7)

ijk = (A1 + kA)6jk (32)

It then suffices that we use a gradient formula equivalent to that of Smith who provided its
derivation by making equilibrium estimates of the residual parts through a delicate
procedure using time-decaying temporary expedients,

Ck(xt) A+k Ukna for k N, (33)

which presently can be obtained from either equation (24) or equation (29) by discarding the
term containing a2Ck lax2 as a factor because it contributes nothing to the evolution of the
principal coefficient functions in the form of either equation (25) or equation (30). It thus
follows that

UjUnk
B;k = Bk = (A + kA)k, Uk = Uk Uk K = Kj) .Kjk + kA (34)

and we arrive at the equations pertaining to the multimode diffusion approximation

ac N- a -1 a2cn
at (A + kA)Cj + E jk E +qj(x)5(t), j0,1,...,N 1,x~at' A)= ± ;kn=O u jk axfo k >N=O (35)

where the dispersion coefficient purely arising from the velocity shear is given by
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Djk = Au " u (36)
n N , + kA

The shear dispersion coefficients given by Smith have the same expression as above with
kA = 0 except that A - Ak appears there in the denominator. The difference is of little or no
consequence, however, because both formulations will eventually converge to the same
solutions if enough principal modes are used in the approximation.

5. Dispersion of an inert solute in laminar pipe flow

To apply the multimode approximations for illustrating the attainment of a convergent
solution, we consider here, using the initial-value problem originally posed by Taylor [1], the
dispersive transport of an inert solute (kA = 0) in laminar pipe flow with a constant and
isotropic diffusivity (K = K) for the determination of the area-weighted transverse average
concentration. The needed recipes for this case are given by equation (15) for the baseline
truncation scheme and equation (35) for the higher order multimode approximations.

The pipe wall, having a radius a, is nonabsorptive and impermeable (k s = 0) so that

ac/ar = O at r = a; (37)

the flow is laminar with a velocity profile

u = u,(1 - r2 /a 2) , (38)

with u0 being the centerline velocity, and the source strength due to the initial solute release
is radially uniform, i.e., q(x, r)= q(x) which is a square-integrable function of the axial
coordinate x, meaning that the solute in the pipe is finite in total amount.

The essential characteristic quantities of this particular problem are well known. The
transverse eigenfunctions and eigenvalues are

2

iS-Jo(G]r ) , Aj = 2 , with J(yj)= for j = 0,1,2,..., (39)

where y3 is an increasing sequence starting with yo = 0. Then the area-weighted transverse
average concentration is

C(x, t) = co(X, t), (40)

the strength of eigenmode forcing arising from the initial source release is

qj(x) = q(x)jo , (41)

and the eigenmode-coupling velocities have the explicit expressions

i 2 4(y + o2)
U0= -Uo u 2i='uo for j 1l; and ujk- (y2y2)2 , for k . (42)J Ulk~~~~~~~~~~~~(2)2U k

The shear dispersion coefficients defined by (29) are then given by
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(Yn + j )(,'n +/k)
Djk = 16K Pe 2 E n _ 2N (43)

n=N Yn(Yn -Yj) (n k)

where we have introduced the diffusion Peclet number

Pe = auoIK . (44)

The set of linear systems given by either equations (15) or (35) for the evolution of the
principal coefficient functions c (j = 0, 1 ... , N - 1) can be solved by applying the method
of Laplace and Fourier transforms. In terms of the dimensionless variables

X= Pe - t2 ) and = (45)

it can be readily be shown that the area-weighted transverse average concentration has the
approximate representation

N 1 X , 
= = - f F(co) exp[anr + i(bnr + wX)] dtw, (46)

where i = V/-1,

F() = r q(X) e - i' °X dX (47)

with q(X)-= q(x); p = an + ib, are the zeros of a characteristic determinant, call it IAl,
having an element in the (j + 1)th row and (k + 1)th column given by

ajk = (P+A + p jk + djk + i U jk k for j,k=0,1,2,...,N-1, (48)

with

0o for baseline truncation
dJk= lDjklK Pe2 for multimode diffusion; (49)

An= dlAldp, and B is the cofactor of the first element a00 of determinant AlI, both
evaluated at p = a + ibn .

For graphical illustration, we make use of the slug stimulus example numerically studied in
detail by Gill and Ananthakrishnan [7] where the initial release is of uniform strength unity,
that is,

{1 for lxl<x/2,q(X) = q(x) = {O for 11 >'/2 (50)

with a slug length xla = 6 and a Peclet number Pe = 1000.
The solutions determined with increasing number of principal modes at a dimensionless

time r = 0.1 by the baseline truncation scheme and the higher-order multimode diffusion
approximations are shown in Figs. 1 and 2, respectively. The convergent solutions given by
the solid lines in these graphs are essentially the same for all practical purposes. Before
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Fig. 1. Representations of the mean concentration distribution at = 0.1 from the baseline truncation scheme with
increasing mode number N. The solid line is good for N > 6.
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Fig. 2. Representations of the mean concentration distribution at = 0.1 from higher order multimode approxi-
mations with mode numbers: N = 1 (---), N = 2 (--), N = 3 (..... ), N 5 (-).

convergence is reached, it can be seen from these graphs that baseline truncations result in
underestimating the effects due to the presence of the wall on the longitudinal dispersion of
the solute. However, the multimode diffusion approximations for small N with the residual
terms correlated by the limiting form of equation (22) for the Green's function turn out to do
just the opposite by overestimating such longitudinal spread. The discrepancies are especially
pronounced in the region far upstream of the distribution where the highest concentration
occurs near the pipe wall and diffusion and convection are equally important in the local
transport process of the solute. To obtain the common convergent solution (solid lines in
both graphs), the number of principal modes required by multimode diffusion (N 3 5) turns
out to be one less than that by baseline truncation (N - 6), giving an edge to the former in
computational efficiency.

The convergent solution at r = 0.1 is plotted in Fig. 3 together with the profiles
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Fig. 3. Comparison of the mean concentration profiles at = 0.1 given by different solutions: second-order
dispersion of Gill and Sankarasubramanian [9] (..... ), finite-difference of Gill and Ananthakrishnan [7] (--),
present (- ), and delay-diffusion of Smith [12] (e *· ).

representing the transverse mean concentration distribution determined by other methods.
The latter profiles were duplicated from the originally published graphs with an accuracy
very close to three places. The presently calculated profile satisfies precisely the requirement
of mass conservation and the condition that the centroid of the concentration distribution
moves with the mean flow velocity [2]. It compares very well with the finite-difference result
of Gill and Ananthakrishnan [7]. Neither the second-order dispersion approximation of Gill
and Sankarasubramanian [10] nor the delay-diffusion prescription of Smith [13], however,
enjoys such favorably comparison. Numerical computation of the present solution is a
straightforward matter in obtaining both convergence and accuracy; solution of the
convective diffusion equation by finite-difference formulation, on the other hand, has been
found to necessitate a trial and error procedure in determining the increment sizes of the
space and time variables solely for the purpose of achieving computational stability and
solution convergence [6], perhaps with little or no possibility for the assessment of numerical
accuracy. A close examination of the first moments of the finite-difference solution shows
that the mass of the solute is conserved but the centroid of the distribution is somewhat at
variance with the exact location moving with the mean flow velocity [2]. The slight but
consistent discrepancy between these two solutions shown in Fig. 3 must therefore be
attributed to the inaccuracy inherent from the use of the finite-difference scheme. As
another numerical test, the convergent solutions at an earlier time r = 0.05 are compared in
Fig. 4. Here the general patterns are about the same as those in the previous graph at T = 0.1
except the magnitude of the inaccuracy inherent of the finite-difference scheme becomes
slightly worse. A comparison of the computed profiles at a typical large time of T = 2.2 is
made in Fig. 5. It appears that the numerical results of Gill and Ananthakrishnan [7], though
all three profiles agree reasonably well, seem to fare the worst in quantitative prediction,
further illustrating the difficulty for achieving numerical accuracy associated with the use of
the finite-difference scheme.
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Fig. 4. Comparison of the mean concentration profiles at r = 0.05 given by different solutions: same captions as in
Fig. 3.
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Fig. 5. Comparison of the mean concentration profiles at = 2.2 given by different solutions: same captions as in
Fig. 3.

6. Conclusions

The method of multimode diffusion approximation owes its origin in entirety to the formal
method of eigenmode expansion for the local solute concentration. The condition under
which the Taylor limit of equilibration exists, providing quasi-steady estimates for the
residual mode coefficient functions of the concentration distribution in relation to their
principal counterparts, is explored on a qualifying coherent basis through the use of the
Green's function of diffusion. A method of successive approximations for the determination
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of the principal mode coefficient functions is formulated. Unlike the center manifold
description which is limited purely to asymptotic prediction, the multimode diffusion
approximation can be applied to capture the preasymptotic dispersion behavior as well. For
numerical evolution, the multimode formulation offers the distinctive advantage that the
computation of the solution is steadfastly simple if the transverse eigenfunctions are known.
In any case, the schemes are easy to use for dispersion in open or closed channel flows with
simple transverse geometries.
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